RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR

B.A./B.Sc. SECOND SEMESTER (January – June) 2015 Mid-Semester Examination, March 2015

Date : 18/03/2015 COMPUTER SCIENCE (Honours)

1. Answer any one:

Time : 11 am – 1 pm Paper : II Full Marks : 50

[Use a separate answer book for each group]

Group - A

(Answer Question No. 1 and any two from the rest)

 $[1\times5]$

	a)	It is required to search an arbitrary array of "n" elements to find the element closer to a given number. Outline an algorithm assuming that the given number is not equal to any of the array elements.	[5]
	b)	i) Consider the following multidimensional array: $y(3:10,1:15,10:20)$. Find the address of $y[5, 10, 15]$ using colour major order. Assume that Base $(y) = 400$ and y is an integer type array.	[3]
		ii) What do you mean by symmetric conditions of a double linked list?	[2]
2.		tline an ADT for "List" data structure. In abstract data type how much is specified about blementation?	[9+1]
3.	a)	"There is a simple way to use a circular singly-linked list to to implement both insertion and deletion operations in $O(1)$ time" true or false? Justify.	[3]
	b)	Outline an algorithm to delete duplicate elements from a double-linked list.	[7]
4.	a)	Outline an algorithm to check whether the following expressing are balanced in terms of parentheses— i) $((H)*\{([J+K])\})$ ii) $((A+B)-\{c+d\}]$	
	b)	Show the contents of the stack at each point. Suppose there are two singly-linked list P & Q in the main memory. And Q is merged with P at a certain point. Outline an idea to find the merging point of those two linked lists.	[7]
		[Note point : No algorithm required]	[3]
$\underline{Group - B}$			
Answer <u>any one</u> question:			
5.	a)	Determine the number of correct digits in the number $x = 0.4785$, where it's relative error $E_r = 0.2 \times 10^{-2}$.	[2]
	b)	Evaluate the missing terms in the following table: $x : 0 1 2 3 4 5$ $f(x) : 0 - 8 15 - 35$	[3]
6.	a)	State Lagrange's Interpolation formula.	[2]
	b)	Prove that the sum of Lagrangian functions or co-efficients is unity.	[3]

Answer any two questions:

- Discuss about the different type of errors committed in numerical computation. [3] 7.
 - If a number be rounded to n correct significant figures and K is the first significant figure in the number then prove that the relative error is less than $\,\frac{1}{K\times 10^{n-1}},\,(n\neq 1)\,.$ [4]
 - If $f(x) = 4\cos x 6x$, find the relative percentage error in f(x) for x = 0, if the error in x = .005. [3]
- a) Establish Newton's Forward Interpolation formula and find the error committed in replacing 8. f(x) (original function) by Newton's Forward Formula. [4+3]
 - b) Compute f(2), using appropriate interpolation formula from the given table : [3] 3
 - 5 6 50 f(x): 105
- Evaluate $\int (4x-3x)dx$, taking 10 intervals by Simpson's one-third Rule. Compute also the relative error in your result. [5]
 - b) Write down the geometrical interpretation of Trapezoidal Rule. [2]
 - If h is very small, prove that $\Delta^{n+1} f(x_0) \approx h^{n+1} f^{n+1}(x_0)$. [3]

